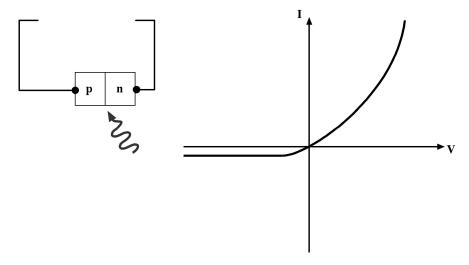
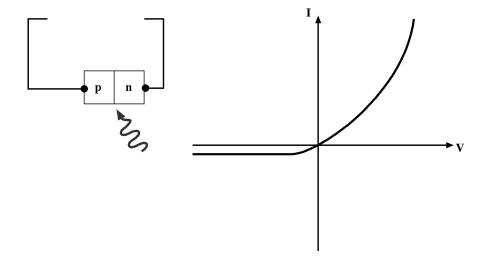
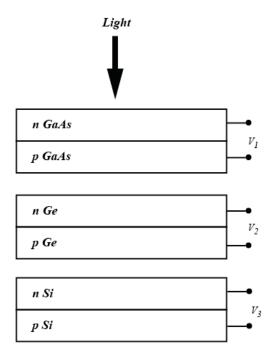
EECS 2077 Semiconductor Devices


16 - Solar & Detectors

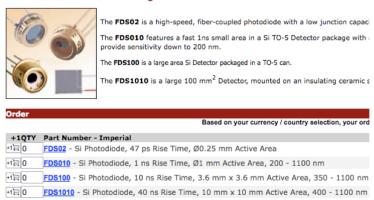
Name:		
ivallie.		


In-Class Problems

(1) Consider a diode...


(a) Draw the new I-V characteristics for the diode when used as a photodetector. You only need to draw your new I-V characteristic <u>in the quadrant of operation as a photodetector</u>. Also, draw the additional basic components needed in the circuit diagram and label the photo-generated current direction in the circuit.

(b) Draw the new I-V characteristics for the diode when used as a photovoltaic device (solar-cell). You only need to draw your new I-V characteristic in the quadrant of operation as a photovoltaic. Also, draw the additional basic components needed in the circuit diagram and label the photo-generated current direction. On the diagram label how you can calculate the power generation achieved by the photodiode.



(2) The bandgap of GaAs is ~1.4 eV, Ge is ~0.8 eV, and Si is ~1.1 eV. Assume the semiconductor layers are thin enough to act as good photodiodes. What wavelengths of light can cause the Ge photodiode to provide a voltage at V_2 ?

- (3) A Si solar cell that is 2 x 2 cm² has a reverse saturation current of 32 nA in the dark, a depletion width of 1 μ m, and has electron and hole diffusion lengths of 2 μ m. If the solar cell is exposed to light and the optical generation rate is 10¹⁸/cc-s:
- (a) calculate the short circuit current
- (b) also calculate the open circuit voltage
- (4) Consider the FDSO2 photodiode part listing below from ThorLabs with the following specifications: Active Area Diameter: 250 μm, Capacitance: 0.94 pF at 5V, Dark Current (5V): 35 pA, Optical Power Damage Threshold CW: 18 mW.

Si Photodiodes - VIS Wavelengths

Wavelength (nm)

- (a) what is the minimum current the photodiode will exhibit during operation?
- (b) what is the maximum current that can be generated at a wavelength of 750 nm?
- (5) Lets finish by making sure you really understand the main equation for current in a photodiode or solar cell...

$$qA\left(\frac{L_p}{\tau_p}p_n + \frac{L_n}{\tau_n}n_p\right)\left(e^{qV_{kT}} - 1\right) - qAg_{op}\left(L_p + L_n + W\right)$$

- (a) If I increase doping, the optically generated current will
 - ___ increase
 - decrease
 - stay the same
 - frighten me.
- (b) A metal and a p-type semiconductor are joined together to make a Schottky diode. The metal work function is LESS than the semiconductor work function. Above is an equation predicting the current value generated by a pn junction photodiode. Please rewrite the current equation using only the remaining terms needed *for this Schottky photodiode that is reverse biased and which has light illumination on it.*
- (6) You apply +40 V to the emitter of a pnp heterojunction bipolar transistor (HBT), the collector is grounded. The base terminal is left floating. The HBT has an amplification factor of ~1000 and perfect emitter injection efficiency (~1). Ideally, how may total charges (q) will flow through the external bias circuit if:
- (a) ten photons are absorbed in the emitter region
 - ____ 0 charges, the charges will just recombine.
 - 10 charges, the charges will be transported through the BJT
 - ___ 10,000 charges, the charges will be amplified by the BJT
 - how the heck would I know? I did not pay attention in class this week and will pay dearly for it on the final...
- (b) ten photons are absorbed in the base-collector depletion region
 - ____ 0 charges, the charges will just recombine.
 - ____ 10 charges, the charges will be collected by the BJT
 - 10,000 charges, the charges will be amplified by the BJT
 - ____ 10,010 charges, the charges will be collected and amplified by the BJT

(c) Lets think about the same problem differently, you bias the same HBT in normal forward active mode and measure
and measure a collector current of Ic=100 mA and a base current Ib of 0.1 mA. These measurements were made in the
dark. You turn the lights on in the room and find that the collector current jumps to 120 mA. Calculate the photo-
generated current in the depletion region. You may assume the effects of photogeneration is negligible in all other device
areas.

 they don't generate as many electron-hole pairs their background (dark) current level is huge compared to the small dark current for a photodiode (rev. sat.) they require more voltage we ran out of beach sand
(8) See the file on blackboard for this lecture title: "Lecture 16 - Suppl 1.pdf".
(a) in the future, what is the highest efficiency we can expect to achieve for real commercial solar cells?
(b) The highest efficiency solar cells will be multi-junction and will be EXPENSIVE, and you can't afford to make large area panels with them. What technology is added to make them more economical?

(7) Why do we rarely use simple uniformly doped semiconductor (a photoconductor) to detect light?